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Abstract.   In this study, we investigate two-dimensional flow through a heterogeneous, 

semiconfined aquifer. In the presence of leakage, the mean flow varies in space and the 

fluctuations of the flow become nonstationary spatially. Such a situation calls for a 

nonstationary stochastic approach since the classical stationary stochastic approaches are 

no longer appropriate. We make use of a nonstationary spectral method to account for 

such nonstationarities in finite semiconfined aquifers. Analytical expressions are obtained 

for head and specific discharge covariances that account for the spatial variability in the 

mean flow but neglect the contributions of the finite boundaries. Closed-form analytical 

expressions for the variances of hydraulic head and specific discharge are derived. The 

statistical structures of the head and specific discharge fields are investigated in terms of 

the leakage factor and the spatial structure of hydraulic conductivity field. Results based 

on the nonstationary approach show that the stationary assumption is inappropriate even 

for a small leakage. 

 



 

1. Introduction 

Formation spatial variabilities have been the focus of many efforts to understand flow 

and transport in heterogeneous systems. Hydraulic head and velocity (specific discharge) 

are strongly influenced by inherent formation properties, e.g., hydraulic conductivity and 

porosity. When the hydraulic conductivity field is regarded as a random space function, 

the various flow quantities like hydraulic head, specific discharge and velocity also 

become random space functions. For confined aquifers, many studies have focused on 

relating the statistical moments of head and velocity to those of the aquifer properties 

[e.g., Dagan, 1982, 1984; Gelhar and Axness, 1983; Neuman et al., 1987]. In a shallow 

aquifer system, the confining beds of a confined aquifer are never truly confined. When 

leakage through the confining beds cannot be neglected, it is referred to as a 

semiconfined aquifer. In such a semiconfined aquifer, the covariances of head and 

specific discharge depend on the statistical structure of hydraulic conductivity, the 

leakage factor as well as its hydraulic boundary conditions. Due to the complex nature of 

flow in semiconfined aquifers, the flow quantities are usually location dependent and thus 

spatially nonstationary. Recently, Zhu [1998] and Zhu and Sykes [2000] derived 

analytical solutions for the head and specific discharge covariances by assuming 

stationarity for the flow of the semiconfined aquifer. In this study, we make use of a 

nonstationary spectral method [Li and McLaughlin, 1991, 1995] to account for statistical 

nonstationarities and their effects on flow in a shallow semiconfined aquifer. In 

particular, the objectives of this study are to (1) present the results of the nonstationary 

approach to quantify the uncertainty of the head and specific discharge in the 
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semiconfined aquifer and (2) compare the results of this nonstationary study with those 

from a stationary approach.  

This manuscript is organized into six sections. The conceptual model is discussed in 

section 2, and the stationary and nonstationary approaches are discussed in section 3. The 

head and specific discharge covariances are presented in section 4, and the results and the 

conclusions are discussed in the last two sections. 

 

2. Conceptual Model 

An aquifer is called semiconfined if its confining beds are not truly impermeable and 

flow (leakage) occurs through these beds (Figure 1). Flow is essentially horizontal in a 

shallow semiconfined aquifer if the semiconfined aquifer is horizontal, the lower layer is 

impermeable, and the head is constant above the upper semipermeable layer. Flow in 

such a situation satisfies the following governing equation [Bear, 1972], 
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where summation for repeated indices “i” is implied with i=1, 2 (here and throughout the 

text subscript i stands for a component of a vector), x = (x1, x2)T is the vector of 

coordinate (where T denoting transpose), h(x) is the head in the aquifer, K(x) is the 

hydraulic conductivity, which is treated as a random space function with known 

statistical moments, h* is the head in the aquifer above the semipermeable layer, and 

)( ** KHH/K=α , is the so-called leakage factor [Zhu, 1998]. K* and H* are the 
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hydraulic conductivity and thickness of the semipermeable layer, and H is the thickness 

of the main aquifer. In this study, K* is assumed much smaller, at least by a factor of 10, 

than K [Strack, 1989], then α is considered to be small as a deterministic constant. h* is 

also assumed to be a deterministic constant [Zhu, 1998]. Equation (1) can be rewritten in 

terms of the relative head hr(x) = h(x) – h*, 
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where ΓN denotes the no-flow boundary segments, and q2 is the specific discharge in x2 

direction.  

 

3. Spectral Methods 

 

In this section, we show how to derive moment equations for hydraulic head and 

specific discharge using stationary and nonstationary spectral methods. It will be shown 

that the general formulation derived with the nonstationary approach reduces to the 

stationary representation under the assumption of constant mean head gradient. 

As commonly done in the literature, we work with the log transformed hydraulic 

conductivity lnK, which may be decomposed into its mean and fluctuation as 

)(')()(ln)( xxxx ffKf +><==  (3) 
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where and in the following text angular brackets < > indicate a mathematical expectation 

(ensemble mean), and the primed quantity is the zero mean fluctuation. Expanding the 

relative head hr and the specific discharge q into the following formal series:  
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(5) 

where  and (with n = 0, 1, 2, ···) are, in a statistical sense, terms of n-th 

order in σ , which is the standard deviation of f. 

)()( xn
rh
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Substitution of (3)-(5) into (2) and collecting terms of the same order leads to [Zhang, 

2002],  
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and 
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where is the (negative) mean head gradient, and nirixi xhxJ ∂−∂= /)()( )0( x

)()( )0( xx rh=> )1(
rh

2(x) is an 

outward unit vector normal to the boundary. It can be shown [Zhang, 2002] that 

and < . Hence, to first order in σ  the fluctuation of the )0(
rh< 0)( =>x f
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relative head is equal to h . For simplicity, we use h'(x) to denote the first order head 

fluctuation h . Likewise, we denote the first order specific discharge fluctuation as 

q
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If the dependent variables (e.g., the head fluctuation h'(x) and the specific discharge 

qi'(x)) are spatially stationary, which is equivalent to uniform mean flow in unbounded 

domains under the condition that the independent variable (f(x) = ln K(x)) is stationary, 

the fluctuations f ', h' and qi' can be expressed by the following stochastic Fourier-Stieltjes 

integral representations [Lumley and Panofsky, 1964; Bakr et al., 1978],  

))(x fdZf ∫=′  (8) 

()(x hdZh ∫=′  (9) 

))(x
iqi dZq ∫=′  (10) 

where k = (k1, …, kd)T is the wave number space vector (where d being the number of 

space dimensions), ≡ι , and dZf(k), dZh(k), and are the complex Fourier 

increments of the fluctuations at k. The integration is d-fold from -∞ to ∞. The stochastic 

Fourier-Stieltjes integral has the following properties, using dZ

)(k
iqdZ

f as an example, 

)(< kfdZ  (11) 

kkkk ′′−=>< ddSdZ f ))(   

where and in the following text the superscript * indicates the corresponding conjugate, 

thus dZ is the complex conjugate of dZ*
f f,  Sff(k) is the spectrum (i.e., spectral density 

function) of f if it is integrable, and δ is Dirac delta function. The first equation of (11) 
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indicates zero mean for the random increment dZf and the second one states the so-called 

orthogonality property of dZf. 

Here let us consider the solution of the (zeroth-order) mean head in Equation (6) in a 

two-dimensional, horizontal bounded domain of two parallel constant head and two 

parallel no-flow boundaries (Figure 1). It can be verified [Zhang, 2002] that 
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Thus the mean head gradient is given as  

)exp()exp()( 1111
xBxAxJ x αα −+=  (13) 

0)( 22
=xJ x  (14) 

where , and  )]exp()/[exp()]exp([ 0 LLLHHA L αααα −−−−−=

)].exp()/[exp(])exp([ 0 LLHLHB L αααα −−−=   

Figure 2 illustrates the mean relative head and its mean (negative) spatial gradient as 

functions of the leakage factor.  The domain is of 10 m x 10 m with the following 

boundary conditions: hr = -1.0 m at x1=0, and hr = -1.1 m at x1=10 m. The curves are 

plotted in the x1 direction (longitudinally) since there is no variation of the mean flow in 

the x2 direction (transversely). The results are shown for leakage factor α =0, 0.01, 0.02, 

and 0.04 m-1. The choices of these leakage factors are consistent with the assumption 

required in Eq. (1). As pointed out by Strack [1989], the hydraulic conductivity K* of the 

leaky layer must be much less (at least by a factor of 10) than the hydraulic conductivity 

K of the aquifer to ensure the validity of Eq. (1). The possible scenario of K*/K = 0.1, H* 

= 1 m and H = 10 m gives α = 0.1 m-1, which is larger than the above values. As a matter 

of fact, given K*/K = 0.1 any combination of H* and H under the condition H*H ≤ 62.5 
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m2 leads to the leakage factor α ≥ 0.04 m-1. It is seen from Figure 2 that the mean relative 

head is generally not a linear function of x1 and the mean head gradient is thus not 

constant in space (along the x1 direction). Only at the small-α limit, i.e., α→0, is the mean 

head gradient constant, which corresponds to the situation of confined flow between two 

impermeable strata (layers). When Jx1(x1) is a function of space, the head fluctuation will 

also be space dependent and thus nonstationary even in an unbounded domain.  

 

3.1 Nonstationary Spectral Method 

In general, for the problem of flow in a semiconfined aquifer a nonstationary approach 

is appropriate. In a recent work, Zhang [2002] discussed a number of nonstationary 

stochastic methods, most of which are based on real space representations. In this study, 

we make use of a nonstationary spectral representation, in which the nonstationary head 

fluctuation is expressed through a generalized spectral representation [Li and 

McLaughlin, 1991, 1995], 

∫=′ )()()( kkx,x fhf dZh φ  (15) 

where φ  is a transfer function to be given. Then the covariance between head at 

location x and x' is given by 
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where Sff(k) is spectral density function of the hydraulic conductivity field. A specific 

form of this spectral density function will be given in the next section. The statistical 
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moments of specific discharge can be related to those of the hydraulic conductivity and 

hydraulic head using Darcy’s law 
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Expanding the exponential function in (17) and collecting terms of the same order, one 

obtains the specific discharge fluctuation, to first-order, as 
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where K0 = exp(<f (x)>) is the geometric mean hydraulic conductivity. With this, the 

covariance functions of the specific discharge are given in Section 4. 

With (13)-(14), the first-order head fluctuation equation (7) can be written as  
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The transfer function φ  can be derived by substituting (8) and (15) into (19),  )( kx,hf
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Multiplying Equation (20) with its complex conjugate and taking expectation [Li and 

McLaughlin, 1995] leads to 
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where vertical bars indicate absolute value. The necessary and sufficient condition for 

equation (21) to hold for any arbitrary Sff(k) is  
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Equation (22) is the so-called modified Helmholtz equation. Because of the special 

exponential forms of the right-hand side of (22), we solve it by inspection and express the 

solution as 
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where C(k) and D(k) are to be determined. Substituting (23) into (22) and solving for the 

unknown coefficients (by comparing terms with exp(αx1) and exp(-αx1) on both sides), 

the resulting transfer function has the following form, 
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where is a short notation for < . In deriving (24), we have made the 

assumption that the effect of finite boundaries on the head fluctuation is negligible. This 

simplifying assumption is made for the purpose of obtaining analytical solutions. Hence, 

the head fluctuation can be expressed as 
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With (25), the spectral expression for the covariance between head at location x and x' is 

given by 
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(26) 

where ξ = x' – x is a displacement vector with components ξ1 and ξ2. 

The nonstationary specific discharge fluctuation can be obtained by substituting (8) and 

(13), (14) and (25) into the equation (18), 
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(27) 

The covariance functions of the specific discharge can then be obtained as 
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3.2.  Stationary Limit 
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The formulations derived in Section 3.1 are for generally nonstationary flows given 

that the log hydraulic conductivity field is stationary. As shown in Figure 2, for the 

limiting case where α→0 the mean gradient is approximately constant, i.e., Jx1(x) ≈ J0. 

Under this condition, the equation governing the transfer function φ  can be 

rewritten from (22) as 
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where J0 is the constant mean head gradient. In an unbounded domain, the corresponding 

solution is, 
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In turn, the head fluctuation is represented via equation (15) as 
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This form of stationary head fluctuation expression is the same as that derived Zhu [1998, 

Eqs. 10 and 13] with the classical (stationary) spectral method, the essence of which is to 

apply the standard Fourier-Stieltjes representation (8)-(9) to (7) under the condition of 

Jx1(x1) ≈ J0. It is seen from (31) and (25) that the nonstationary representation of the head 

fluctuation has an additional dependency on the mean relative head . With the 

stationary representation (31), the head covariance is obtained with (31) as,  
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where ξ = x' – x is a displacement vector with components ξ1 and ξ2. The specific 

discharge fluctuation is obtained by substituting (8) and (31) into (18), 
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where δij is the Kronecker delta. With (33), we obtain the following covariance functions 

of specific discharge, after some manipulations, 
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The stationary results in (34) are, again, the same as those by Zhu [1998].  

On the basis of these stationary expressions, Zhu [1998] and Zhu and Sykes [2000] 

have obtained analytical solutions for the head and specific discharge covariances. As 

discussed earlier, these stationary expressions are valid only in the limit of α→0. It will 

be shown in Section 5 that the nonstationary results derived in the next section reduce to 

the stationary results. 

 

 

4. Analytical Solutions 

 

In this section, we evaluate the (co)variances of head and specific discharge 

analytically or semi-analytically on the basis of the nonstationary expressions given in 

Section 3.1. For a two-dimensional steady state flow problem, we use the following 

spectral density function to characterize the log hydraulic conductivity field,  
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where σ is the variance of f , λ is a parameter associated with the correlation scale l2
f e of 

the hydraulic conductivity field, λ = 16/(3π le), and 2
2

2
1 kk +=k . It is modified from the 

forms of spectrum for two-dimensional flow proposed by Mizell et al. [1982]. The auto 

correlation function in real space is plotted in Figure 3 and is compared with that of 

exponential form. 

 

4.1. Head Covariance 

With (35), the head covariance is obtained from (26), after some manipulations, as 
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The head variance is obtained from the corresponding covariance function in (36) at 

zero lag distance, i.e., ξ1 = ξ2 = 0, and by evaluating the resulting integral in a polar 

coordinate system, 
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(37) 

where µ=2α, and J0=Jx1(0). With Mathematica [Wolfram, 1991], we obtain the following 

closed form expression for the head variance from (37), 
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4.2.  Covariance of Specific Discharge 

After substituting (35) into (28), we get the following covariance functions of specific 

discharge, after some manipulations, 
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The variance of the specific discharge in the longitudinal direction is obtained by letting 

x' = x or ξ1 = ξ2 = 0 in (39) and evaluating the resulting integrals in a polar coordinate 

system: 
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(42) 

With Equation (42) being evaluated with Mathematica [Wolfram, 1991], we obtain the 

following closed-form expression for the normalized specific discharge variance in the 

longitudinal direction: 
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(43) 

Similarly, the variance in the transverse direction is derived as 
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(44) 

With Mathematica [Wolfram, 1991], from (44) we obtain the following closed-form 

expression for the normalized specific discharge variance in the transverse direction: 
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(45) 

The covariances of head and specific discharge are computed from (36) and (39)-(41) 

by numerical integrations. The accuracy of the integration procedure is verified by 

comparing the variances obtained numerically with the closed-form solutions given in 

(38), (43) and (45).  
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5. Results and Discussion 

 

In this section, we discuss some results pertinent to the variances and covariances of 

hydraulic head and specific discharge and their dependency on the leakage factor. In 

particular, we show how the results from the nonstationary approach compare with those 

from the stationary one. The flow domain and the mean (relative) head have already been 

discussed in Section 3 (see Figure 2). For the results discussed in the following, the 

correlation length le of (35) is set to 1.0 m and σ is taken to be 1.0. Following Zhu 

[1998], we define a dimensionless leakage factor γ = α l

2
f

e. In the following examples, the 

values of γ range from 0 to 0.04, which are reasonable on the basis of our previous 

discussion and are smaller than the value of γ = 1 that Zhu [1998] used his stationary 

model.  

Figures 4 and 5 show the head and specific discharge variances as functions of x1 and 

as functions of the dimensionless leakage factor, respectively. As the mean flow is 

unidirectional along the x1 direction and the effect of finite boundaries on the second 

moments is neglected, the variances do not vary in space along the transverse (x2) 

direction. It is seen that for a dimensionless specific leakage the head variance increases 

longitudinally (Figure 4a). For γ = 0.01, the head variance is almost constant in space. 

The dependency of the head variance on the dimensionless leakage factor γ is a strong 

function of the location in the longitudinal direction. At x1=0, the head variance initially 

decreases with γ but increases for γ > 0.025; at x1=5 and 10, the head variance decreases 

only for very small γ  (say, <0.004) and then increases with γ. This observation differs 
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from that by Zhu and Sykes [2000] with a stationary approach: The head variance 

decreases monotonically with the increase of γ (see the dash-dot-dot curve in Figure 5a). 

Zhu and Sykes [p.205, 2000] attributed “this significant reduction in the head variance 

with increasing [leakage factor]” to “[for a large leakage factor] the large head above the 

leaky layer nullifies the head variation in the main aquifer”. This apparent contradiction 

may be explained with a comparison based on (26) and (32). The nonstationary 

expression in (26) consists of two terms (one involving with Jx1 and the other with hr) 

while the stationary expression (36) has only one term involving with J0. The 

contributions of the two terms in (26) are plotted in Figure 5b for x1=5. It is seen that the 

Jx1 related term decreases slowly while the hr related term is zero for very small γ values 

and increases rapidly with γ for large γ values. Hence, the (total) head variance increases 

with γ except for very small γ values. This comparison suggests that the stationary 

approximation is valid for and only for very small leakage factor values. 

The variances of the longitudinal and transverse specific discharge components vary 

spatially along the x1 direction (Figures 4b, c). At x1=0, the specific discharge variances 

decrease with the dimensionless leakage factor; at x1=10, the variances increase with γ 

(Figures 5c,d). Only near x1=5.0 (the center of the domain), the specific discharge 

variances are almost identical for the stationary and nonstationary approaches. This 

observation is different from that by Zhu [1998] with the stationary spectral method: The 

longitudinal and transverse specific discharge variances are monotonic (increasing and 

decreasing, respectively) functions of dimensionless leakage factor, independent of 

location in the domain. As γ decreases, the longitudinal and transverse specific discharge 

variances normalized with respect to σ  approach 0.375 and 0.125, respectively. It is 2
0

2 Jf
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seen that in the limit of γ  →0, our nonstationary results reduce to the well know results 

for two-dimensional, uniform mean flow [Dagan, 1989; Rubin, 1990; Zhang, 2002].  

Figure 6 depicts the head covariance Chh(x, x') as a function of  x(x1, x2) for 

dimensionless leakage factor γ = 0 and γ = 0.04, respectively. In Figure 6 (and also in 

Figures 7 and 8 to be discussed next), the reference point x' is selected to be the center of 

the domain. It is seen that the head covariance is asymmetric for γ = 0.04 in the 

longitudinal direction (and thus nonstationary) while it is symmetric for γ = 0. The 

covariances of longitudinal and transverse specific discharge are shown in Figures 7 and 

8, respectively. Also, the nonstationary approach yields asymmetric specific discharge 

covariances for γ = 0.04 while the stationary approach [Zhu, 1998] produces symmetric 

(and stationary) ones.  

 

6. Conclusions  

In this study, we investigate flow in a heterogeneous, semiconfined (leaky) aquifer with 

a nonstationary spectral perturbation method. We evaluate the resulting moments of head 

and specific discharge analytically or semi-analytically and compare them with those 

derived with a stationary spectral method. The main findings of this study are 

summarized as follows: 

1). Due to the spatial variation of the mean head gradient in a leaky aquifer, the flow 

field is nonstationary. This flow nonstationarity calls for a nonstationary stochastic 

approach as stationary approaches fail in such a situation. This study reveals that the 

nonstationary spectral method developed by Li and McLaughlin [1991, 1995] is 

applicable to such a flow in the case of stationary log transformed hydraulic conductivity.  
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2). The nonstationary formulations for flow in the semiconfined aquifer have terms 

associated with both the mean relative head and the mean head gradient. The contribution 

for the term associated with the mean relative head is significant for large values of the 

leakage factor and is exactly what the stationary approach by Zhu [1998] and Zhu and 

Sykes [2000] fails to capture. As expected, the effects of leakage on flow increase as the 

leakage factor increases. 

3). The nonstationary and stationary approaches yield very different results for large 

values of the dimensionless leakage factor γ while they are identical in the limit of very 

small γ values. Unlike predicted by the stationary approach, the nonstationary head 

variance does not monotonically decrease with the increase of γ. The head variance 

decreases initially for very small γ but eventually increases with γ for larger γ values. 

Specific discharge variances, both the longitudinal and transverse components, decrease 

in the upstream of the flow domain but increase in the downstream domain as the 

dimensionless leakage factor γ increases. This observation is different from that by Zhu 

[1998] with the stationary spectral method: The specific discharge variances are 

monotonic functions of the dimensionless leakage factor, independent of location in the 

domain. 

4). The covariance functions of head and specific discharge are normally asymmetric 

(and thus anisotropic as well as nonstationary) in the presence of leakage. 

5). Both the non-uniform mean gradient and the presence of finite flow boundaries 

contribute to the nonstationary (location-dependent) behaviors of the head and specific 

discharge statistical moments.  In this study, we have neglected the effects of finite 

boundaries on the head and specific discharge (co)variances for the purpose of deriving 
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analytical or semi-analytical solutions. To fully account for the latter effects, a 

numerically based moment equation approach is appropriate as discussed by Zhang 

[2002] and is out of the scope of this study. 
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Captions 

 

Figure 1.   A schematic semiconfined leaky aquifer. 

Figure 2.   (a) The mean relative head, and (b) mean head gradient along the longitudinal 

direction for selected values of leakage factor. 

Figure 3.   Autocorrelation function of the spectrum function of log transformed 

hydraulic conductivity.  

Figure 4.   Variances along the mean flow direction for dimensionless leakage factor γ = 

0, 0.01, 0.02 and 0.04: (a) head variance, (b) longitudinal specific discharge variance, 

and (c) transverse specific discharge variance.  

Figure 5.   Variances as functions of dimensionless leakage factor at x1 = 0, 5, and 10 m:  

(a) head variance, (b) head variance at x1 = 5 m with contributions from hr and Jx 

related terms, (c) longitudinal specific discharge variance, and (d) transverse specific 

discharge variance. 

Figure 6.   Head covariance contours for (a) γ = 0.0, and (b) γ = 0.04. 

Figure 7.   Longitudinal specific discharge covariance contours for (a) γ = 0.0, and (b) γ 

= 0.04. 

Figure 8.   Transverse specific discharge covariance contours for (a) γ = 0.0, and (b) γ = 

0.04. 
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